Produits
  • Produits
  • Catégories
  • Blog
  • Podcast
  • Application
  • Document
|
DEMANDER UN DEVIS
/ {{languageFlag}}
Sélectionnez la langue
Stanford Advanced Materials {{item.label}}
Stanford Advanced Materials
/ {{languageFlag}}
Sélectionnez la langue
Stanford Advanced Materials {{item.label}}

Application de la poudre de tantale imprimée en 3D dans le domaine de la biomédecine

En tant que nouvelle méthode de fabrication pour l'industrie manufacturière mondiale, la fabrication additive a attiré l'attention du public il y a six ou sept ans. C'est ainsi qu'a été inventée l'"impression 3D", un nom très terre-à-terre et très imagé.

L'impression 3D de métaux est largement considérée comme la technologie la plus prometteuse. Il s'agit d'une technologie de prototypage rapide basée sur la simulation numérique, qui utilise des poudres de métal, de céramique et de plastique pour imprimer couche par couche. De la fabrication de modèles en plastique aux pièces fines des navettes spatiales, il est désormais possible d'imprimer une voiture entière grâce à la technologie de l'impression 3D.

La technologie de l'impression 3D est également largement utilisée en biomédecine, où l'on peut imprimer des os artificiels. La poudre de tantale est un excellent matériau biocompatible. Elle possède une très forte inertie biologique et une grande résistance à la corrosion. Dans cet article, nous allons examiner de plus près l'application de l'impression 3D de poudre de tantale dans les biomédicaments tels que les articulations de la hanche.

3D printing

Metalysis a réussi à produire une structure en treillis de tantale biologiquement inerte et peut obtenir des résultats spécifiques et aléatoires. Ces structures suivent la rigidité structurelle des os humains et peuvent être combinées avec des cellules osseuses, de sorte que le corps humain peut parfaitement accepter ce type de nouveau tissu. Stanford Materials se consacre à la fourniture de poudre de tantale ultrafine (D50=3um, D90<10um) pour les applications biologiques. Lorsqu'il est utilisé pour la fabrication additive et la fusion sélective au laser, ce type de poudre de tantale ultrafine peut toujours conserver une cohérence structurelle. La surface finale peut également être modifiée. Les propriétés du métal restent très stables.

Tantalum in biology

La poudre de tantale a une très large application dans le domaine biologique, en particulier dans le domaine de la médecine. L'impression 3D de métal pour le remplacement de l'articulation de la hanche est historique. Les organes de remplacement en métal imprimés en 3D sont fabriqués en scannant la hanche, ce qui permet aux patients d'avoir des articulations de la hanche sur mesure. Cela améliore la situation dans laquelle nous ne pouvions choisir que des tailles standard dans le passé. Outre les implants de l'articulation de la hanche, les cages lombaires de soutien de la colonne vertébrale présentent également un intérêt particulier pour l'industrie.

Conclusion

Nous vous remercions d'avoir lu notre article et nous espérons qu'il vous aidera à mieux comprendre l'application de la poudre de tantale imprimée en 3D dans le domaine biomédical. Si vous souhaitez en savoir plus sur les produits en Ti, nous vous conseillons de visiter le site de Stanford Advanced Materials (SAM) pour plus d'informations.

Stanford Advanced Materials (SAM) est un fournisseur mondial de poudre de tantale et possède plus de vingt ans d'expérience dans la fabrication et la vente de produits à base de tantale, fournissant des produits de haute qualité pour répondre aux besoins de nos clients en matière de R&D et de production. C'est pourquoi nous sommes convaincus que SAM sera votre fournisseur de tantale et votre partenaire commercial préféré.

Lecture associée : Poudre de tantale sphérique pour l'impression 3D

CATÉGORIES
À propos de l'auteur

Chin Trento

Chin Trento est titulaire d'une licence en chimie appliquée de l'université de l'Illinois. Sa formation lui donne une large base à partir de laquelle il peut aborder de nombreux sujets. Il travaille sur l'écriture de matériaux avancés depuis plus de quatre ans à Stanford Advanced Materials (SAM). Son principal objectif en rédigeant ces articles est de fournir aux lecteurs une ressource gratuite mais de qualité. Il est heureux de recevoir des commentaires sur les fautes de frappe, les erreurs ou les divergences d'opinion que les lecteurs rencontrent.
REVUES
{{viewsNumber}} Pensée sur "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont marqués*

Commentaire
Nom *
Email *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

Plus de réponses

LAISSER UNE RÉPONSE

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont marqués*

Commentaire
Nom *
Email *

Nouvelles et articles connexes

PLUS >>
Préparation et application de la poudre de titane

Le développement rapide de la technologie d'impression 3D a ouvert de nouvelles voies pour l'application des poudres de titane et d'alliage de titane. Dans des domaines tels que l'aérospatiale, les appareils médicaux et l'automobile, la poudre de métal de titane est largement utilisée pour fabriquer des composants complexes, très résistants et légers.

LIRE PLUS >
Types courants de cuivre au béryllium

Le cuivre au béryllium (BeCu) est un alliage de haute performance connu pour sa combinaison de solidité, de conductivité et de résistance à la corrosion. Il est largement utilisé dans diverses industries, notamment l'aérospatiale, l'électronique et l'industrie manufacturière. Découvrons les caractéristiques, la classification, les applications et la fabrication de l'alliage de cuivre au béryllium.

LIRE PLUS >
Révolutionner la photonique : le rôle des couches minces optiques personnalisées

Les revêtements optiques personnalisés sur les plateformes SiO₂ et ZnSe ne sont pas simplement des améliorations progressives, mais représentent un changement de paradigme dans la conception photonique. En faisant le lien entre la science des matériaux, la modélisation informatique et l'ingénierie des applications, ces technologies permettent aux industries d'exploiter la lumière avec une précision sans précédent.

LIRE PLUS >
Laisser un message
Laisser un message
* Votre nom:
* Votre Email:
* Nom du produit:
* Votre téléphone:
* Commentaires: